Magnetic flows on homogeneous spaces
نویسندگان
چکیده
منابع مشابه
Magnetic Flows on Homogeneous Spaces∗
We consider magnetic geodesic flows of the normal metrics on a class of homogeneous spaces, in particular (co)adjoint orbits of compact Lie groups. We give the proof of the non-commutative integrability of flows and show, in addition, for the case of (co)adjoint orbits, the usual Liouville integrability by means of analytic integrals. We also consider the potential systems on adjoint orbits, wh...
متن کاملFlows on Homogeneous Spaces
We present a new approach to metric Diophantine approximation on manifolds based on the correspondence between approximation properties of numbers and orbit properties of certain ows on homogeneous spaces. This approach yields a new proof of a conjecture of Mahler, originally settled by V. G. Sprind zuk in 1964. We also prove several related hypotheses of Baker and Sprind zuk formulated in 1970...
متن کاملLogarithm Laws for Flows on Homogeneous Spaces
In this paper we generalize and sharpen D. Sullivan’s logarithm law for geodesics by specifying conditions on a sequence of subsets {At | t ∈ N} of a homogeneous space G/Γ (G a semisimple Lie group, Γ an irreducible lattice) and a sequence of elements ft of G under which #{t ∈ N | ftx ∈ At} is infinite for a.e. x ∈ G/Γ. The main tool is exponential decay of correlation coefficients of smooth fu...
متن کاملNondense Orbits of Flows on Homogeneous Spaces
Let F be a nonquasiunipotent one-parameter (cyclic) subgroup of a unimodular Lie group G, Γ a discrete subgroup of G. We prove that for certain classes of subsets Z of the homogeneous space G/Γ, the set of points in G/Γ with F -orbits staying away from Z has full Hausdorff dimension. From this we derive applications to geodesic flows on manifolds of constant negative curvature.
متن کاملFlows on Homogeneous Spaces and Diophantine Approximation on Manifolds
We present a new approach to metric Diophantine approximation on manifolds based on the correspondence between approximation properties of numbers and orbit properties of certain flows on homogeneous spaces. This approach yields a new proof of a conjecture of Mahler, originally settled by V. G. Sprindžuk in 1964. We also prove several related hypotheses of Baker and Sprindžuk formulated in 1970...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Commentarii Mathematici Helvetici
سال: 2008
ISSN: 0010-2571
DOI: 10.4171/cmh/139