Magnetic flows on homogeneous spaces

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Magnetic Flows on Homogeneous Spaces∗

We consider magnetic geodesic flows of the normal metrics on a class of homogeneous spaces, in particular (co)adjoint orbits of compact Lie groups. We give the proof of the non-commutative integrability of flows and show, in addition, for the case of (co)adjoint orbits, the usual Liouville integrability by means of analytic integrals. We also consider the potential systems on adjoint orbits, wh...

متن کامل

Flows on Homogeneous Spaces

We present a new approach to metric Diophantine approximation on manifolds based on the correspondence between approximation properties of numbers and orbit properties of certain ows on homogeneous spaces. This approach yields a new proof of a conjecture of Mahler, originally settled by V. G. Sprind zuk in 1964. We also prove several related hypotheses of Baker and Sprind zuk formulated in 1970...

متن کامل

Logarithm Laws for Flows on Homogeneous Spaces

In this paper we generalize and sharpen D. Sullivan’s logarithm law for geodesics by specifying conditions on a sequence of subsets {At | t ∈ N} of a homogeneous space G/Γ (G a semisimple Lie group, Γ an irreducible lattice) and a sequence of elements ft of G under which #{t ∈ N | ftx ∈ At} is infinite for a.e. x ∈ G/Γ. The main tool is exponential decay of correlation coefficients of smooth fu...

متن کامل

Nondense Orbits of Flows on Homogeneous Spaces

Let F be a nonquasiunipotent one-parameter (cyclic) subgroup of a unimodular Lie group G, Γ a discrete subgroup of G. We prove that for certain classes of subsets Z of the homogeneous space G/Γ, the set of points in G/Γ with F -orbits staying away from Z has full Hausdorff dimension. From this we derive applications to geodesic flows on manifolds of constant negative curvature.

متن کامل

Flows on Homogeneous Spaces and Diophantine Approximation on Manifolds

We present a new approach to metric Diophantine approximation on manifolds based on the correspondence between approximation properties of numbers and orbit properties of certain flows on homogeneous spaces. This approach yields a new proof of a conjecture of Mahler, originally settled by V. G. Sprindžuk in 1964. We also prove several related hypotheses of Baker and Sprindžuk formulated in 1970...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Commentarii Mathematici Helvetici

سال: 2008

ISSN: 0010-2571

DOI: 10.4171/cmh/139